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A systematic series of micromagnetic simulations on periodic cross-tie/vortex wall structures in an ideal soft film at various widths,
thicknesses, and period lengths is performed. For each width and thickness a natural period length is found which has minimal
energy density for walls of this type. For each width, a critical thickness is determined below which the natural period length is
infinite; for films thinner than this, the pure Néel wall has lower energy than any cross-tie/vortex wall. Details of the origin of the
energy reduction in cross-tie/vortex walls as compared to Néel walls are also examined, and canting inside cross-tie and vortex
structures in films thicker than 1 �ex is explained.

1. Introduction

The predominant types of 180◦ domain walls in soft films are
Néel walls occurring in very thin films, Bloch walls in thicker
samples, and numerous transitional structures [1–3]. One
of the more interesting transitional structures is the cross-
tie/vortex (or simply cross-tie) wall which alternates cross-
ties and vortices between counterrotating segments of Néel
walls. Cross-tie/vortex walls are observed experimentally
[4–6], in micromagnetic simulations [6–9], and in theory
[10, 11]. In finite samples, this wall type appears in low
remanence closed-flux Landau patterns, as seen in Figure 1.
If the structure is long enough, then multiple cross-ti/evortex
pairs can appear, as in Figure 2.

To gain insight into the formation and structure of cross-
tie/vortex walls, this work presents a systematic collection of
micromagnetic simulations performed using the OOMMF
micromagnetic package from NIST [12]. An ideally soft
material was modeled (anisotropy constant K = 0 J/m3)
with saturation magnetization Ms = 860 kA/m and exchange
coefficient A = 13 pJ/m, to approximate an NiFe alloy.
All of the simulations were performed with no applied
field.

The component energies in this system are the stray field
energy and the exchange energy, with the component fields
defined by:
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where m = M/Ms is the normalized (unit) magnetization. In
both cases, energy density E = −(1/2)μ0M ·H, where the 1/2
factor arises from the dependence of H on M. Thus the total
energy density in the system is

Etotal = −μ0

2
M ·

(
Hstray field + Hexchange

)
. (3)

In soft films, the relevant length scale is the
magnetostatic-exchange length, defined by

�ex =
√

A

Kd
, (4)
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Figure 1: Zero-field equilibrium state from a micromagnetic sim-
ulation of a magnetically soft thin film rectangle with dimensions
500 �ex × 100 �ex × 6 �ex. The shading indicates the magnetic charge
−div M, with black indicating negative charge and white positive
charge.

Figure 2: Simulation of the same system as in Figure 1, but in
an equilibrium configuration featuring three cross-ties alternating
with vortices; for this sample this is a lower energy state than the
single cross-tie state in Figure 1.

where Kd is the magnetostatic energy density

Kd = 1
2
μ0M

2
s . (5)

All lengths reported herein are in units of �ex, and energy
densities are reported in units of Kd. However, for the given
values of A and Ms, �ex

.= 5.289 nm and Kd
.= 464.7 kJ/m3, so

the results may be easily converted to nm and J/m3 if desired.

2. Simulation Details

Aside from Figures 1 and 2, the simulations in this paper
are periodic along the long axis of the wall, as indicated in
Figure 3. This allows the structure of the cross-tie/vortex wall
to be studied separately from the effects of edge domains.
The period length is denoted by X , with Y and Z denoting
the sample width and thickness, respectively. Coordinates are
introduced such that positions (x, y, z) inside the simulation
volume run from 0 ≤ x ≤ X , 0 ≤ y ≤ Y , and 0 ≤ z ≤ Z.

The computational cells are approximately cubic in
shape, with each edge dimension not larger than 1/2 �ex.
This size is small enough that the maximum change in
magnetization angle from one cell site to the next is kept
below about 30◦; this suffices to provide a good rendering
of the magnetization on the discretized grid. The y and z cell
sizes are adjusted downward if necessary to make the count of
cells across each of the y and z dimensions odd, so that there
is a unique center cell along each of those dimensions. The x
cell size is adjusted downward as necessary so that the count
of cells along the x dimension is ≡2 (mod4) (so allowed cell
counts are 2, 6, 10, . . .). Taken together, these adjustments
allow a unique cell in the center of each of the vortex and
cross-tie cores to be identified.

The initial magnetization configuration for each simu-
lation is either taken from the end state of a previous run
(if one is available that is close to the dimensions of the
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Figure 3: Simulations are computed on a rectangular volume
representing a thin film strip with thickness Z, width Y , and an
infinite length modeled by a periodic length of dimension X .

current run) or else set to a cartoon version of the cross-
tie/vortex configuration as illustrated in Figure 3. Either way,
the magnetization in the central cell in the vortex core is
set to +z (along the film normal) and the central cell in the
cross-tie core is set to−z. Except as noted, the magnetization
in these center cells is held fixed. As discussed in Rave [8],
this pinning tends to accelerate convergence of simulations to
equilibrium and improves accuracy. Simulations run without
this constraint show no discernible difference in the end
equilibrium state. Some simulations were also run with the
vortex and cross-tie cores both aligned in the +z direction.
This raises the energy somewhat, but for most geometries the
energy difference is negligible, typically less than one part in
105. For simulations with a period length to film thickness
ratio of less that 10 : 1, however, the difference is larger. For
example, in the X = 25 �ex, Y = 200 �ex, Z = 8 �ex case the
energy in the aligned core setting was 3% larger than for the
antialigned setting.

Once the initial magnetization is set, the simulation
proceeds by energy minimization via a conjugate-gradient
procedure, stopping when the reduced torque |m×H|/Ms <
1.2× 10−8.

3. Results and Discussion

Each point in Figure 4 marks the average total energy density
at equilibrium resulting from a simulation with width Y =
200 �ex at the indicated thickness Z and period length X .
There is one cross-tie/vortex pair in each period, so as the
period length X grows large the wall becomes primarily
two Néel segments interrupted by a cross-tie and vortex at
either end. This is evident in the behavior of the curves for
large X , as for each thickness Z the curve asymptotically
converges to the energy density of the associated Néel wall.
For small period lengths (X < 100 �ex) the energy density
grows sharply as the exchange energy resists compression
of the complex cross-tie/vortex structure. For thinner films
(Z under about 1 �ex for Y = 200 �ex), the energy density
curves are monotonically decreasing. This means that in a
thin infinite strip if the cross-tie and vortex are not pinned by
some means, they will spread out indefinitely leaving behind
a plain Néel wall. This is consistent with the experimental
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Figure 4: Average total energy density as a function of period length
X for simulations with width Y = 200 �ex for various thicknesses
Z (measured in �ex). Symbols represent simulation results, lines
are a guide to the eye. Each of the curves with Z ≥ 2 �ex exhibits
a minimum value between 125 �ex and 320 �ex. In this range, the
curves for Z ≤ 1 �ex are monotonically decreasing with X .
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Figure 5: Average stray field (open symbols) and exchange energy
(filled symbols) densities as a function of period length X for width
Y = 200 �ex at thicknesses Z = 6 �ex and 1 �ex. These curves are
a decomposition of the corresponding total energy density curves
from Figure 4 into constitutive parts.

result that cross-tie/vortex walls are not observed in ultrathin
films. The transition thickness is a function of the strip width
Y ; this dependence is explored in Figure 9 below.

For thicker films there is a unique minimum on each
curve, which corresponds to a “natural” period length X—
this is the period length that minimizes the energy for a cross-
tie/vortex wall at the given film thickness and strip width.
Note though that each point in Figure 4 is a stable equilib-
rium configuration under the fixed period assumption. So if
the period length is constrained by geometry or other means

such as pinning defects, then period lengths other than the
natural length are possible, as seen in Figures 1 and 2.

The energy wells are asymmetric, especially for the
midlevel thicknesses, say Z between 2 �ex and 4 �ex. In this
regime the penalty for a period longer than the natural
period is small, but in all cases periods significantly shorter
than the natural period are energetically prohibitive.

Another feature of the curves in Figure 4 is that as the
films grow thicker, the energy density increases, the natural
period length grows shorter, and the energy well is deeper.
These effects can be explained by examining the stray field
and exchange component energies of the total energy.

In this regard, note two attributes of the magnetization
in these simulations. The first is that the shape anisotropy of
thin films constrains the magnetization to lie mostly in-plane
(the notable exception being of course the cores of vortex and
cross-tie structures). The second is that the magnetization
does not vary much along the film normal (z) direction. This
is due in part to the dominance of exchange coupling over
the relatively short distance between the top and bottom of
each film and also due to the relative uniformity of stray field
in z. (The latter condition does not hold near the vicinity
of the vortex and cross-tie cores, and this leads to nearby z-
variation in m, as will be seen below.)

The second attribute means we can meaningfully con-
sider a situation where the magnetization is held fixed and
the thickness of the part is varied. In this setting the first
integral in the formula for the stray field (1), which handles
the effects of the bulk charge, is seen to vary linearly with
thickness Z via the change in the part volume. Ignoring
magnetic charges on the top and bottom surfaces in the
second integral, we see that it too varies linearly with Z
(although in the Landau flux-closure structures considered
here this contribution is minor regardless). The net result
is that if the magnetization were held fixed, then reducing
the film thickness would be expected to reduce the stray
field by a similar amount. The exchange field (2), however,
does not vary with thickness Z. This means that one can
expect exchange to take on a more dominant role as the film
thickness is decreased.

These effects are on display in Figure 5, which breaks
down the total energy density curves from Figure 4 for two
thicknesses into the stray field and exchange components.
For both thicknesses we see the dominance of the exchange
energy in short-period lengths, giving way to the stray
field energy for longer period lengths. Moreover, for each
component the energy density is greatly reduced in the
thinner strip. If the magnetization configurations were the
same for the two thicknesses, then by the above analysis
the exchange energy density would stay constant and the
stray field energy density would drop by a factor of six. In
practice, of course, what happens is that the weak stray field
in the thinner film allows the magnetic structures to expand,
reducing the exchange energy at the expense of a modest
increase in the stray field.

To understand how cross-tie/vortex structures lower the
energy density of a Néel wall, return to Figure 1, and focus
first on a section of the Néel portion of the wall between the
left hand vortex and the cross-tie. Moving from bottom to
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Figure 6: Equilibrium configuration for width Y = 200 �ex, thickness Z = 4 �ex, and X-period length 185 �ex (which is the natural period
length for this Y and Z). (a) Magnetization pattern, (b) stray-field energy density, (c) exchange energy density, and (d) total energy density.
In (b)–(d), the shading scale runs from white (low energy density) to black (high energy density).

top across the wall, the magnetization rotates counterclock-
wise. This configuration produces negative magnetic charge
on the lower half of the strip (dark region) and positive
charges on the upper half (light region). (Here “lower”
and “upper” refer to the view on the page.) This sets
up a stray field running from the positive charges to the
negative charges, counter to the magnetization in the center
of the wall, making the wall center a high stray field energy
density region. On the right hand side of the cross-tie the
magnetization rotation direction across the wall is reversed,
so that the positive charge region is below the wall and
the negative charge region is above. The wall is still a high
stray field energy density region, but the checkerboarding
of the charge regions reduces the total stray field energy in
two ways. The first factor is that by effectively arranging the
charge regions into a quadrupole configuration, the extent of
their stray field is reduced. The second, larger contribution
is seen more clearly in Figure 2. In the checkerboard pattern,
stray field between the charge blocks runs not only up and
down across the Néel sections of the wall, but also left and
right horizontally parallel to the wall. The orientation of the
magnetization about each vortex core is such that it aligns
with the stray field from the nearby charge blocks, so that the

regions above and below each vortex are regions of low stray
field energy density.

This latter effect is shown directly in Figure 6, which
is from the (periodic) simulation corresponding to the
minimum point on the Z = 4 �ex curve in Figure 4. Parts
(b)–(d) of this figure are shaded to indicate the component
and total energy densities as a function of position. In part
(b), the light-colored low energy density regions above and
below the vortex core are clearly visible. Part (c) shows
the regions of high exchange energy density. These include
the vortex core and center of the wall, as expected. It is
interesting that there is also a region of high exchange
energy running perpendicular to the wall through the
cross-tie core. In an idealized cross-tie, the magnetization
rotates around the cross-tie core in the same manner as
the magnetization rotates about a vortex core, only with
the opposite winding number. In such a configuration the
exchange energy is exactly the same as for a vortex (the stray
field energy is a different matter, of course), so the high
exchange energy spike perpendicular to the wall must arise
due to deformation of the cross-tie structure. Most likely
the observed buckling in the magnetization along this line is
caused by the horizontal stray field from the checkerboard
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Figure 7: Cross-sectional (yz) averages for total, stray field, and
exchange energy densities as a function of the x location along the
wall for the simulation in Figure 6, and the energy density for a Néel
wall in the same geometry. The center of the vortex core is in the
cross-section at offset x = 46 �ex, and the center of the cross-tie
core is at x = 139 �ex. The two half-width dashed red lines indicate
the average energy density of the cross-tie/vortex wall across each
corresponding half-period.

charge regions which flows counter to the magnetization
here.

Additional details may be gleaned from Figure 7, which
shows cross-sectional averages for Figure 6 and includes
a black-dashed line showing the energy density for a pure
Néel wall in this geometry. The energy savings in stray field
energy around the vortex core, and expense around the cross-
tie core, are shown by the green line. On either side of
the cross-tie and vortex cores, the magnetization spreads
out slightly as compared to a Néel wall, and as a result
the exchange energy density (blue line) in those regions is
slightly less than the exchange energy density for a Néel
wall (not shown). This savings is more than offset by the
increase in exchange energy inside the vortex and cross-tie
core structures, so that in total the exchange energy for the
cross-tie/vortex wall is higher than the exchange energy for
the Néel wall. (Another view of this is that the wall structure
outside the cores is essentially that of a stretched Néel wall;
the stretching reduces the exchange energy, but the stray
field energy across the wall is increased by more than the
exchange energy reduction.) The dashed red line shows the
combined (stray field plus exchange) energy density averaged
across each half of the simulation volume. This shows a clear
reduction in energy density as compared to the Néel wall for
the portion of the simulation about the vortex, and a clear
increase about the cross-tie. The average of these two half-
lines is the average energy density for the cross-tie/vortex
wall as a whole, which is slightly below the energy density
for the pure Néel wall. An important point here is that the
cross-tie structure by itself costs energy as compared to the
Néel wall; the cross-tie/vortex wall formation as a whole is
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Figure 8: Cross-tie/vortex pair period length (X) having the
lowest energy density as a function of film thickness (Z) for five
strip widths (Y , in �ex), as labeled (log-log scale). Symbols show
data from micromagnetic simulations; curves are least-square fits
through data to the functional form X = A/((Z/B) − 1) + C; the
corresponding values for A, B, and C for each curve are given in
Table 1.
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Figure 9: Critical thickness at which the Néel wall has lower energy
density than a cross-tie/vortex wall of period X , for all X , as a
function of strip width Y . Data points are from Table 1, the line
is the fit curve 30/Y 2/3.

energetically favorable only because of the stray field energy
savings associated with the vortex structure.

The two graphs, Figures 8 and 9, collect information
on the natural period lengths from Figure 4 and similar
simulation series for several other strip widths. For each strip
width Y and thickness Z, a sequence of simulations was
performed using a golden section search to locate the precise
X-period that minimized the total energy density. In Figure 8
we observe that for each strip width Y , the minimal X-period
length data can be fitted fairly well by a curve of the form
X = A/((Z/B) − 1) + C, where Z is the film thickness and
A, B, and C are fit parameters. In this fit only the data for
Z < 8 �ex are used; in the thicker films the cross-tie and vortex
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Figure 10: Enlarged view of a 15 �ex × 6 �ex subsection about a vortex in a simulation having X-period length of 147 �ex, width Y = 200 �ex,
and thickness Z = 6 �ex. Parts (a), (b), and (c) show the top, middle, and bottom planes, respectively, while (d) is a cross-section through
the full thickness of the sample at the location marked in (b), roughly 3.5 �ex to the left of the vortex core. The shading indicates the absolute
value of the x-component of the magnetization, with black at mx = 0.
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Figure 11: Companion image to Figure 10, this enlarged view of a 15 �ex× 6 �ex subsection is about the cross-tie in the same simulation with
X-period length of 147 �ex, width Y = 200 �ex, and thickness Z = 6 �ex. Parts (a), (b), and (c) show the top, middle, and bottom planes,
respectively, while (d) is a cross-section through the full thickness of the sample at the location marked in (b), roughly 3.5 �ex to the left of
the cross-tie core. The shading indicates the absolute value of the x-component of the magnetization, with black at mx = 0.
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Table 1: Coefficients to functional form X = A/((Z/B)− 1) +C for
various strip widths Y to fit simulation results for minimal energy
X-period (see Figure 8).

Strip width A B C

(�ex) (�ex) (�ex) (�ex)

50 58 1.988 32

100 117 1.386 60

150 177 1.091 87

200 243 0.906 113

250 320 0.774 136

500 832 0.431 245

structures develop significant asymmetry which alters the
character of the structure. If this asymmetry did not develop,
then the parameter C would describe the asymptotic period
length that would be obtained in thick films.

At the other end of the scale, we see that each of the
curves in Figure 8 has a pole on the left, which corresponds
to parameter B. As discussed above with respect to the
Z = 0.1 �ex curve in Figure 4, if a film is thin enough then
there is no minimal period length. For each strip width Y ,
the critical thickness dividing the two regimes corresponds
to the location of the pole in Figure 8 (or, equivalently,
parameter B). The critical thickness as a function of strip
width Y is plotted on a log-log scale in Figure 9. We see from
the fitted curve, Zcrit ≈ 30/Y 2/3, that the critical thickness
decreases with increasing strip width. From a practical
standpoint the natural period length can be quite large. For
example, although the Z = 1 �ex curve in Figure 4 appears
to be monotonically decreasing, the fit in Table 1 predicts a
minimum at X = 2455 �ex, or roughly 13μm in NiFe.

As an example of the use of Figure 8, refer again to the
finite system of Figures 1 and 2. If we allow for a 50 �ex

border at each of the left and right sides of the sample
to accommodate edge closure domains, then that leaves
a 400 �ex run in the middle for the cross-tie/vortex wall.
From Figure 8, we see that the natural period length for
a strip of width 100 �ex and thickness 6 �ex is just under
100 �ex. This predicts that a configuration with four cross-
tie/vortex periods would have lower energy than either the
three period configuration shown in Figure 2 or a five period
configuration. Direct simulations on the finite system bear
out this result.

In regions where the magnetization lies in-plane, the
stray field is nearly uniform through the thickness of the
film, and so the magnetization also shows little variation
in z. The vortex and cross-tie core regions, however, are
delineated by out-of-plane magnetization, and this does
produce a z-dependence on the magnetization near the
cores. This effect is shown in Figures 10 and 11. (For this
simulation, the magnetization in the central cells of the
cores was not pinned.) Looking first at the magnetization
at the top surface around the vortex core (Figure 10(a)), the
magnetization in the vortex core points out of the plane,
and the resulting positive magnetic charge interacts with
the checkerboard magnetic charge pattern on either side by

pushing the positive charge blocks away (towards −y on the
left and +y on the right) and extending the negative charge
regions. This causes a “micro-deformation” of the wall [7];
the spacing between the arrows in the diagram is roughly
1/2 �ex, so the total deformation is about 1 �ex. Outside the
viewed region, at about 12 �ex on either side of the core, the
wall shifts back to the center line.

On the bottom surface of the film (Figure 10(c)), the
surface charge from the core has the opposite charge, and
the wall shifts in the opposite direction, while the midplane
shows no shift at all (Figure 10(b)). A cross-section through
the thickness of the film (Figure 10(d)) shows that the wall
is actually canted by about 10◦ from the vertical. Outside of
this view area, the Néel portions of the wall are not canted,
but run through the thickness of the film independent of z.
Figure 11 shows that the magnetization around the cross-tie
core behaves similarly.

This effect relies on the opposite charges on the top
and bottom surfaces being sufficiently far apart that they
can independently influence the nearby magnetization. For
thinner films, the extent of the dipole field from the core
diminishes relative to the exchange length and the wall
canting is reduced; for films thinner than about 1 �ex the
effect is not evident.

4. Conclusion

In an ideally soft magnetic thin film, the 180◦ cross-tie/vortex
wall is a periodic structure consisting of alternating cross-
ties and vortices sandwiched between Néel wall segments
having alternating chiralities. This structure is primarily two
dimensional (i.e., independent of z), with the exception of
minor canting on either side of both cross-tie and vortex
cores in films thicker than 1 �ex.

In an infinite strip, the cross-tie/vortex wall structure has
a natural period length that minimizes the energy density for
this class of walls, and this length is a function of both the
strip thickness and width. For a given strip width Y , there
is a critical thickness Zcrit below which the natural period
length is infinite. That relation is Zcrit ≈ 30/Y 2/3, with Zcrit

and Y measured in �ex. In films thicker than Zcrit, the energy
reduction obtained by a cross-tie/vortex wall as compared to
a plain Néel wall is the result of decreased stray field energy
across the outboard sides of the vortex cores arising from the
checkerboarding of the magnetic charge associated with the
Néel wall segments.

Related periodic wall structures are topologically per-
missible, for example one could replace each vortex in the
cross-tie/vortex structure with a counterrotating cross-tie,
or replace each cross-tie with a counterrotating vortex. The
former is probably energetically ill-favored, but the latter
produces the well-known diamond state that frequently
sports lower energy than the cross-tie/vortex wall [8].
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